Quantum probes for fractional Gaussian processes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Rate of Entropy for Gaussian Processes

In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...

متن کامل

Quantum Gaussian Processes

This paper studies construction of quantum Gaussian processes based on ordinary Gaussian processes through their reproducing kernel Hilbert spaces, and investigate the relationship between the stochastic properties of the quantum Gaussian processes and the base Gaussian processes. In particular, we construct quantum Brownian bridges and quantum Ornstein-Uhlenbeck processes. Non-commutative stoc...

متن کامل

Quantum algorithms for training Gaussian Processes

Gaussian processes (GPs) are important models in supervised machine learning. Training in Gaussian processes refers to selecting the covariance functions and the associated parameters in order to improve the outcome of predictions, the core of which amounts to evaluating the logarithm of the marginal likelihood (LML) of a given model. LML gives a concrete measure of the quality of prediction th...

متن کامل

On Gaussian Processes Equivalent in Law to Fractional Brownian Motion

We consider Gaussian processes that are equivalent in law to the fractional Brownian motion and their canonical representations. We prove a Hitsuda type representation theorem for the fractional Brownian motion with Hurst index H [ 2 . For the case H> 2 we show that such a representation cannot hold. We also consider briefly the connection between Hitsuda and Girsanov representations. Using the...

متن کامل

Gaussian Processes for Prediction

We propose a powerful prediction algorithm built upon Gaussian processes (GPs). They are particularly useful for their flexibility, facilitating accurate prediction even in the absence of strong physical models. GPs further allow us to work within a complete Bayesian probabilistic framework. As such, we show how the hyperparameters of our system can be marginalised by use of Bayesian Monte Carl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physica A: Statistical Mechanics and its Applications

سال: 2014

ISSN: 0378-4371

DOI: 10.1016/j.physa.2014.06.052